Forward from: Machinelearning
Video is unavailable for watching
Show in Telegram
🔥 Модель Wan2.1-T2V-14B от команды Wan-AI – новый топовый опенсорс инструмент генерации видео, который объединяет в себе несколько интересных особенностей.
⚡️ Мощная архитектура yf 14 млрд параметров
Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.
Модель поддерживает:
- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.
Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:
- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт
Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.
Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.
Как работает:
▪Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
▪Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
▪Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
▪Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.
Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.
Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.
🟡 Github: https://github.com/Wan-Video/Wan2.1/
🟡HF: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
🟡Model Scope: https://modelscope.cn/organization/Wan-AI
@ai_machinelearning_big_data
#TexttoVideo #ai #ml #video #wanai
⚡️ Мощная архитектура yf 14 млрд параметров
Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.
Модель поддерживает:
- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.
Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:
- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт
Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.
Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.
Как работает:
▪Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
▪Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
▪Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
▪Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.
Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.
Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.
🟡 Github: https://github.com/Wan-Video/Wan2.1/
🟡HF: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
🟡Model Scope: https://modelscope.cn/organization/Wan-AI
@ai_machinelearning_big_data
#TexttoVideo #ai #ml #video #wanai