AGI_and_RL


Гео и язык канала: не указан, не указан
Категория: не указана


This channel tell you about Artificial General Intelligence and Reinforcement Learning.
author @tokarev_i_v

Связанные каналы  |  Похожие каналы

Гео и язык канала
не указан, не указан
Категория
не указана
Статистика
Фильтр публикаций


SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation https://arxiv.org/abs/2011.07215


Robust Quadruped Jumping via Deep Reinforcement Learning https://arxiv.org/abs/2011.07089


ROLL: Visual Self-Supervised Reinforcement Learning with Object Reasoning. https://arxiv.org/abs/2011.06777


Transfer among Agents: An Efficient Multiagent Transfer Learning Framework https://arxiv.org/abs/2002.08030




Active Reinforcement Learning: Observing Rewards at a Cost https://arxiv.org/abs/2011.06709


Learning Latent Representations to Influence Multi-Agent Interaction https://arxiv.org/abs/2011.06619


Continual Learning of Control Primitives: Skill Discovery via Reset-Games https://arxiv.org/abs/2011.05286


Reinforcement Learning with Videos: Combining Offline Observations with Interaction https://arxiv.org/abs/2011.06507




SMIX(λ): Enhancing Centralized Value Functions for Cooperative Multi-Agent Reinforcement Learning https://arxiv.org/abs/1911.04094


A Game-Theoretic Utility Network for Cooperative Multi-Agent Decisions in Adversarial Environments https://arxiv.org/abs/2004.10950


Value-Decomposition Multi-Agent Actor-Critics https://arxiv.org/abs/2007.12306


QR-MIX: Distributional Value Function Factorisation for Cooperative Multi-Agent Reinforcement Learning https://arxiv.org/abs/2009.04197


Multi-Agent Collaboration via Reward Attribution Decomposition https://arxiv.org/abs/2010.08531


QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning https://arxiv.org/abs/1803.11485.






Human-Robot Collaboration via Deep Reinforcement Learning of Real-World Interactions https://arxiv.org/abs/1912.01715


Reinforcement Learning with Human Teachers: Evidence of Feedback and
Guidance with Implications for Learning Performance http://robotic.media.mit.edu/wp-content/uploads/sites/7/2015/01/Thomaz-etal-AAAI-06.pdf

Показано 20 последних публикаций.

62

подписчиков
Статистика канала