Почему данные — главное технологическое преимущество ИИ-стартапаБольшинство стартапов терпят неудачу — это аксиома. Поэтому важно выстраивать понятный и быстрый процесс проверки продуктовых гипотез для максимизации вероятности запуска успешного продукта. Расскажу про свой кейс, когда мы выпустили продукт на рынок США и проиграли конкуренцию Google.
В 2023 году я присоединился к стартапу
Aola в роли технического директора. Aola — ИИ-ассистент для поиска досуга: интересных мест и событий — кафе, ресторанов, концертов, кино и многого другого.
Команда была небольшой: React-разработчик на фронт, Python-разработчик на бэк, ML-инженер для создания рекомендательной системы и парт-тайм DevOps-инженер для инфраструктурных задач. Моя роль заключалась в управлении технической командой, написании кода ИИ-ассистента, сборе данных, а также запуске продукта на рынок с настроенной аналитикой. Главный вопрос, который стоял передо мной — где брать данные для рекомендательной системы?
У меня было два варианта — использовать агрегаторы, например
Yelp и
Ticketmaster, или открытые источники. С агрегаторами всё оказалось не так просто: они не предоставляли доступа к семантическому поиску, искать места и события можно было только по городам и категориям. Это серьёзно осложняло желание масштабироваться, но мы решили попробовать этот вариант для проверки MVP на одном городе.
Для запуска MVP я собрал данные из Атланты и настроил интеграцию с рекомендательной системой на базе коллаборативной фильтрации. Для реализации ИИ-ассистента я использовал Langchain (LangGraph появился чуть позже). ИИ-ассистент не только рекомендовал досуг, но мог поддерживать беседы на различные темы, связанные с досугом, и даже придумывать игры. Вот пара интересных статей наработки из которых я использовал в проекте:
как использовать LLM в разговорных рекомендательных системах и
фреймворк RecSys-Assistant-Human.
Было интересно наблюдать, как наш ассистент общается с пользователями, знает все отзывы и детали о местах и предлагает гиперперсонализированные рекомендации на основе их предпочтений. Например, пользователю с ребёнком ассистент рекомендовал пойти в кафе с детской комнатой и посоветовал, какие развлечения понравятся ребёнку на основе отзывов.
В первый день запуска мы собрали 1k+ пользователей из одного города, но понимали, что нужно масштабироваться на большее количество городов. Однако, ежедневно делать реплику всей базы агрегаторов было слишком затратно.
Поэтому я переключился на сбор данных из источников с наличием семантического поиска. Я создал ИИ-агентов, которые формировали поисковые запросы в Google Places и Google Events, собирали подробную информацию о каждом месте и возвращали ИИ-ассистенту. В итоге нам не пришлось ежедневно собирать и обновлять данные по различным городам — мы научили агентов хорошо «гуглить» за пользователя.
Мы запустили мобильное приложение, веб-версию, Telegram-бот и даже интеграцию в Instagram. В первые дни казалось, что мечта начинает сбываться, так как нашим приложением начали пользоваться 5k+ пользователей, но через несколько дней Gemini (на тот момент Bard) выкатил обновление, в котором он тоже научился обращаться к своим же сервисам за нужными данными для поиска досуга быстрее, чем мы.
В итоге у нас не было конкурентного преимущества. Да, мы могли продолжать делать рекламу и привлекать больше пользователей, но мы были объективно хуже Google Bard, и конкурировать с ним было бессмысленно — у нас не было уникальных данных, к которым у нас был бы быстрый доступ.
Этот опыт стал для меня хорошим уроком. Я понял, что без уникальных данных или обученных ИИ-моделей на этих данных сложно иметь технологическое конкурентное преимущество. Данные сегодня — это действительно новая нефть.
#кейсы