Artificial Intelligence


Kanal geosi va tili: Butun dunyo, Inglizcha


Artificial Intelligence
admin - @haarrp
@itchannels_telegram - 🔥 best it channels
@ai_machinelearning_big_data - Machine learning channel
@pythonl - Our Python channel
@pythonlbooks- python книги📚
@datascienceiot - ml 📚
РКН: clck.ru/3FmwZw

Зарегистрирован в РКН
Связанные каналы  |  Похожие каналы

Kanal geosi va tili
Butun dunyo, Inglizcha
Statistika
Postlar filtri


Machinelearning dan repost
Video oldindan ko‘rish uchun mavjud emas
Telegram'da ko‘rish
🔥 Модель Wan2.1-T2V-14B от команды Wan-AI – новый топовый опенсорс инструмент генерации видео, который объединяет в себе несколько интересных особенностей.

⚡️ Мощная архитектура yf 14 млрд параметров

Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.

Модель поддерживает:

- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.

Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:

- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт

Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.

Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.

Как работает:

Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.

Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.

Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.

🟡 Github: https://github.com/Wan-Video/Wan2.1/
🟡HF: https://huggingface.co/Wan-AI/Wan2.1-T2V-14B
🟡Model Scope: https://modelscope.cn/organization/Wan-AI

@ai_machinelearning_big_data

#TexttoVideo #ai #ml #video #wanai


Какие методы машинного обучения применяются для дизайна белков?

Расскажем на открытом уроке, посвященному курсу «Искусственный интеллект в медицине»

Узнаете, как современные алгоритмы помогают моделировать, предсказывать и оптимизировать структуру и функции белков.

Разберете основные подходы, включая языковые модели для белковых последовательностей и методы генеративного дизайна.

Практика: Знакомство с современными инструментами и библиотеками, используемыми в белковой инженерии

👉 Регистрация и подробности: 
https://otus.pw/1qsY/?erid=2W5zFJRU7ya

#реклама
О рекламодателе


Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition

🖥 Github: https://github.com/nuozimiaowu/Text4VPR

📕 Paper: https://arxiv.org/abs/2502.14195v1

🌟 Dataset: https://paperswithcode.com/task/cross-modal-place-recognition

@ArtificialIntelligencedl


Масштабная конференция Data Fusion 2025 состоится уже этой весной! 16 и 17 апреля в Москве на площадке технологического кластера «Ломоносов» соберутся 250+ экспертов, чтобы обсудить новейшие разработки в области AI.

Вас ждут:
🔹Передовые разработки в анализе данных и ИИ
🔹Новейшие исследования и кейсы использования AI в финансах, медицине, промышленности и других сферах
🔹Дискуссии с представителями от бизнеса, науки и государства

Узнайте о главных инсайтах в AI из первых уст на Data Fusion 2025!
Участие бесплатное. Регистрация открыта — https://data-fusion.ru/



*AIискусственный интеллект
*ML
Machine Learning – машинное обучение.
*Воркшоп
практическое обучение
*Нетворкинг
полезные связи


Machinelearning dan repost
✔️ GitHub Copilot для Xcode запущен для публичного тестирования.

GitHub Copilot для Xcode Chat стал доступен для публичного превью. Для начала работы достаточно учетной записи GitHub.

GitHub Copilot – это ИИ-ассистент, который помогает разработчикам писать код быстрее и точнее. Теперь, помимо дописывания кода, GitHub Copilot для Xcode предлагает интеллектуальные предложения для конкретных задач через интерактивный чат.

Для доступа к GitHub Copilot для Xcode потребуется лицензия Copilot. Есть бесплатный доступ, включающий 2000 итераций автозавершения кода и 50 чат-запросов в месяц.
devblogs.microsoft.com

✔️ OpenAI опубликовала SWE-Lancer: бенчмарк для LLM в кодинге.

SWE-Lancer позиционируется как инструмент оценки производительности языковых моделей в задачах программирования для фрилансеров. Он основан на 1400 фриланс-задачах, собранных из Upwork и репозитория Expensify. Задания варьируются от исправления незначительных ошибок до внедрения крупных функций.

SWE-Lancer предназначен для оценки как отдельных исправлений кода, так и управленческих решений, где модели должны выбирать лучшее предложение из нескольких вариантов. Одной из сильных сторон SWE-Lancer является использование сквозных тестов вместо изолированных модульных операций. Репозиторий бенчмарка ожидается в ближайшее время.
arxiv.org

✔️ X повышает цены на Premium+ после выпуска Grok 3.

X (ех-Twitter) значительно повысила цену на план подписки Premium+, дающий доступ к Grok 3 от xAI. Она подорожала почти до 50 долларов в месяц.

Теперь, чтобы пользоваться "deep search" и "reasoning", надо оформить отдельный план SuperGrok через приложение Grok.

Согласно сайту поддержки X, месячная подписка на Premium+ в США теперь стоит 50 долларов, а годовая – 350 долларов. Это уже второе повышение цен на план Premium+ за последние пару месяцев. В декабре компания подняла цену с 16 до 22 долларов в месяц. Таким образом, новая цена более чем вдвое превышает текущую стоимость подписки.
techcrunch.com

✔️ Native Sparse Attention - революция в механизмах внимания от Deepseek.

NSA (Natively Sparse Attention) — новый механизм внимания, предложенный на заменуFull Attention, который значительно ускоряет обработку длинных последовательностей текста без потери качества модели.
NSA использует динамическую иерархическую стратегию, которая сочетает сжатие токенов на грубом уровне с точным отбором ключевых токенов. Это позволяет сохранить глобальное понимание контекста и локальную точность. NSA поддерживает сквозное обучение, совместим с GQA и MQA, что делает его пригодным не только для инференса, но и для обучения.
Модели, обученные с использованием NSA показали 9х ускорение при прямом распространении и 6х при обратном для последовательностей длиной 64к токенов относительно Full Attention. В декодировании - 11х.
arxiv.org

✔️ Мира Мурати готова рассказать миру, над чем она работает.

Мира Мурати, ex-CTO OpenAI, покинула свой пост в сентябре 2024, заявив о желании "создать время и пространство для собственных исследований". И вот стало известно, что она – CEO компании Thinking Machines Lab. Ее миссия – разработка первоклассного AI, полезного и доступного для всех.

В команду Thinking Machines Lab вошли известные исследователи и ученые, в основном из OpenAI. Среди них – экс-вице-президент по исследованиям Баррет Зоф, руководитель по мультимодальным исследованиям Александр Кириллов, руководитель специальных проектов Джон Лакман и ведущий исследователь Люк Мец. Главным научным сотрудником станет Джон Шульман, один из ключевых создателей ChatGPT, ранее работавший в OpenAI и Anthropic. Есть специалисты из Google и Mistral AI.

Команда уже работает над рядом проектов в офисе в Сан-Франциско. Хотя конкретные продукты пока неясны, Thinking Machines Lab не планирует создавать копии ChatGPT или Claude. Цель – AI-модели, оптимизирующие сотрудничество между человеком и AI, что Мурати считает главным препятствием в развитии отрасли.
wired.com

@ai_machinelearning_big_data

#news #ai #ml


Вышел свежий подкаст с Данилом Ивашечкиным из «Норникеля» — обсудили место России в гонке технологий, планы по разработке языковых моделей и почему нейронкам пока не доверяют тяжелое производство.

Заодно вспомнили сериал «Убежище» и поговорили, как ИИ уже помогает придумывать новые лекарства и компьютерные игры.


✔️ Awesome AI/ML Resources: Learn AI/ML for beginners with a roadmap and free resources.

🖥 Github

@ArtificialIntelligencedl




Евгений Разинков – преподаватель ML в Казанском университете с многолетним стажем, руководитель собственной команды ML-инженеров и автор популярного канала по машинному обучению на YouTube

приглашает вас в свою AI-школу.

Особенности:
• теория и практика
• акцент на самостоятельную реализацию архитектур с нуля
• полное понимание того, что происходит внутри нейронной сети
• архитектуры от сверточных нейронных сетей до трансформеров и языковых моделей.

Регулярные живые QA-сессии, дружное комьюнити, а также компетишены, где можно будет посоревноваться (в командах и поодиночке) в решении ML задач.

От вас: владение Python и знание основ классического ML (регрессия, классификация, градиентный спуск).
Если классический ML не знаете - есть базовые курсы по ML.

7 месяцев, 4 курса:
• AI: от основ до языковых моделей
• Math for AI - необходимый математический бэкграунд
• MLOps - всё про жизненный цикл модели, логирование, версионирование, docker
• Decision making in AI - управление AI-проектом и стратегия

В рамках Capstone Project вы с нуля реализуете и обучите небольшую языковую модель для генерации простых историй, а также выведете ее в продакшн.

Полная стоимость за 7 месяцев (все 4 курса):
• 112 000 рублей (единоразово)
или
• 17 000 рублей в месяц
Если материалы вам не понравятся, мы вернем деньги за текущий оплаченный месяц (и последующие при единоразовой оплате)!

Старт уже 17 февраля, скорее регистрируйтесь здесь!

Еще больше подробностей о курсе ищите в видео и на странице с отзывами участников.

Кстати, теоретические видео курса AI: от основ до трансформеров находятся в открытом доступе на канале Евгения!

ООО «Лаборатория Евгения Разинкова», ИНН: 5043088023, erid: 2VtzqxKcuC1




🚀 Data Fusion Contest 2025: пришло время заявить о себе

Что такое Data Fusion Contest 2025?

Ежегодное онлайн-соревнование по анализу данных и машинному обучению для специалистов Data Science от Т1 и ВТБ. Общий призовой фонд — 3 000 000 рублей 🔥

В этом году участников ждут 2 основные задачи:

«Label Craft» — про предсказание категории товаров.

«4 Cast» — про предсказание динамики платежей на последующие 12 недель.

И одна образовательная задача — «Distribution».

А ещё будет специальная номинация Companion за лучшие публичные решения, в которой победителей определит жюри, учитывая поддержку со стороны других конкурсантов в чате соревнования.

📆 Даты проведения соревнования: с 13 февраля по 7 апреля 2025 года.

❗️Формат — онлайн: участвовать можно из любой точки мира.

🏆 Торжественная церемония награждения победителей состоится в Москве во время конференции по анализу данных и технологиям ИИ — DATA FUSION 2025.

👉 Регистрируйся на соревнование прямо сейчас.

Информация о рекламодателе


⭐️ Light-A-Video: Training-free Video Relighting via Progressive Light Fusion

🖥 Github: https://github.com/bcmi/Light-A-Video

📕 Paper: https://arxiv.org/abs/2502.08590v1

🌟 Dataset: https://paperswithcode.com/task/image-relighting

@ArtificialIntelligencedl


Что можно создать с помощью Python? Сервис знакомств, чат-бота с ИИ, систему по поиску данных — почти всё что угодно. Именно за универсальность и простоту разработки компании и профессионалы любят Python.

Как освоить этот язык программирования, рассказывают на расширенном курсе Нетологии «Python-разработчик».

На нём вы:
- Освоите все инструменты и технологии, необходимые для работы.
- Научитесь разрабатывать веб-приложения и API, работать с базами данных, настраивать сервера и тестировать код.
- Поработаете с фреймворками Flask и Django и узнаете, как разрабатывать backend веб-приложения.
- Добавите в портфолио 22 проекта, поработаете над реальными кейсами и примете участие в хакатоне.

После курса вы сможете стать крепким backend-разработчиком и попасть на стажировку в «Самолёт». А если вдруг решите сменить направление, Python станет надёжной базой для аналитики и машинного обучения.

Оставьте заявку на обучение со скидкой 45% и сэкономьте 10 000 ₽ по промокоду PRINT(45). Построить карьеру в IT

Реклама. ООО "Нетология". ИНН 7726464125 Erid 2VSb5wRQH52


CycleGuardian: A Framework for Automatic RespiratorySound classification Based on Improved Deep clustering and Contrastive Learning

🖥 Github: https://github.com/chumingqian/CycleGuardian

📕 Paper: https://arxiv.org/abs/2502.00734v1

🌟 Dataset: https://paperswithcode.com/dataset/icbhi-respiratory-sound-database

@ArtificialIntelligencedl


Demystifying Long Chain-of-Thought Reasoning in LLMs

🖥 paper
🧠 code

@ArtificialIntelligencedl




⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: https://t.me/+i__6ED-eRfkwOTYy
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: 'https://t.me/addlist/2Ls-snqEeytkMDgy' rel='nofollow'>https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy


⭐️ Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph

🖥 Github: https://github.com/dosonleung/fasttog

📕 Paper: https://arxiv.org/abs/2501.14300v1

@ArtificialIntelligencedl


Continual Forgetting for Pre-trained Vision Models (CVPR2024)

🖥 Github: https://github.com/bjzhb666/GS-LoRA

📕 Paper: https://arxiv.org/abs/2501.09705v1

🧠 Dataset: https://paperswithcode.com/dataset/coco

@ArtificialIntelligencedl


Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding

🖥 Github: https://github.com/opengvlab/piip

📕 Paper: https://arxiv.org/abs/2501.07783v1

🌟 Dataset: https://paperswithcode.com/dataset/gqa

@ArtificialIntelligencedl

20 ta oxirgi post ko‘rsatilgan.