Forward from: Data world with Mina
🔶در #یادگیری_ماشین ، هایپرپارامترها تنظیماتی هستند که شما قبل از آموزش مدل خود پیکربندی می کنید.
برخلاف پارامترهایی که مدل شما در طول آموزش یاد می گیرد، هایپرپارامترها باید از قبل تنظیم شوند. یافتن هایپرپارامترهای مناسب می تواند عملکرد مدل شما را تا حد زیادی افزایش دهد و بهینه سازی هایپرپارامتر را ضروری می کند.
✔️فراپارامترهای بهینه سازی مناسب
می توانند دقت و قابلیت اطمینان مدل را به طور قابل توجهی افزایش دهند.
آنها به مدل شما کمک می کنند تا به خوبی تعمیم یابد و از overfitting (در مواردی که مدل بیش از حد با داده های آموزشی متناسب است) و underfitting (که در آن مدل به اندازه کافی پیچیده نیست تا الگوهای اساسی را به تصویر بکشد) اجتناب می کنند.
🔶پروژه متن باز optana توسط Preferred Networks, Inc. ایجاد شد و در سال 2018 به یک پروژه متن باز تبدیل شد. این پروژه برای مقابله با چالش های بهینه سازی هایپرپارامتر طراحی شده است و رویکردی کارآمدتر و سازگارتر از روش های قبلی ارائه می دهد. از زمان انتشار، Optuna طرفداران زیادی پیدا کرده است.
این روش Optuna چندین ویژگی برجسته را ارائه می دهد که آن را به ابزاری قدرتمند برای بهینه سازی هایپرپارامتر تبدیل می کند. جستجو برای بهترین هایپرپارامترها را خودکار می کند، حدس و گمان را از تنظیم خارج می کند و به شما امکان می دهد روی توسعه مدل خود تمرکز کنید.
در این مقاله می توانید آموزش نصب، و استفاده از متد برای بهینه سازی هایپرپارامترهای مدلهای Xgboost و شبکه عصبی با #pytorch را ببینید.
https://towardsdatascience.com/machine-learning-optimization-with-optuna-57593d700e52
برخلاف پارامترهایی که مدل شما در طول آموزش یاد می گیرد، هایپرپارامترها باید از قبل تنظیم شوند. یافتن هایپرپارامترهای مناسب می تواند عملکرد مدل شما را تا حد زیادی افزایش دهد و بهینه سازی هایپرپارامتر را ضروری می کند.
✔️فراپارامترهای بهینه سازی مناسب
می توانند دقت و قابلیت اطمینان مدل را به طور قابل توجهی افزایش دهند.
آنها به مدل شما کمک می کنند تا به خوبی تعمیم یابد و از overfitting (در مواردی که مدل بیش از حد با داده های آموزشی متناسب است) و underfitting (که در آن مدل به اندازه کافی پیچیده نیست تا الگوهای اساسی را به تصویر بکشد) اجتناب می کنند.
🔶پروژه متن باز optana توسط Preferred Networks, Inc. ایجاد شد و در سال 2018 به یک پروژه متن باز تبدیل شد. این پروژه برای مقابله با چالش های بهینه سازی هایپرپارامتر طراحی شده است و رویکردی کارآمدتر و سازگارتر از روش های قبلی ارائه می دهد. از زمان انتشار، Optuna طرفداران زیادی پیدا کرده است.
این روش Optuna چندین ویژگی برجسته را ارائه می دهد که آن را به ابزاری قدرتمند برای بهینه سازی هایپرپارامتر تبدیل می کند. جستجو برای بهترین هایپرپارامترها را خودکار می کند، حدس و گمان را از تنظیم خارج می کند و به شما امکان می دهد روی توسعه مدل خود تمرکز کنید.
در این مقاله می توانید آموزش نصب، و استفاده از متد برای بهینه سازی هایپرپارامترهای مدلهای Xgboost و شبکه عصبی با #pytorch را ببینید.
https://towardsdatascience.com/machine-learning-optimization-with-optuna-57593d700e52