Data Science Machine Learning Data Analysis Books


Гео и язык канала: США, Английский
Категория: Технологии


This channel is for Programmers, Coders, Software Engineers.
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho

Связанные каналы  |  Похожие каналы

Гео и язык канала
США, Английский
Категория
Технологии
Статистика
Фильтр публикаций


Репост из: Data Science and Programming Languages Free Courses
✅ 1 Year Perplexity Pro on Your Mail
💰 Price:$20 or ₹1500

✅ 1 Year You.com Pro on Your Mail
💰 Price:$25 or ₹1800

💰Combo Offer:40$

Original Price:200$

How I activate ?
I activate account through voucher codes on your mail for 1 year.

💡 Features Included
✅Advanced AI Models:
• DeepResearch
•GPT-4o, o1, o3 mini(High)
• Deepseek r1[USA Hosted Uncensored]
• Llama 3.1
•Claude 3.5 Sonnet, Claude 3.5 Haiku
•Grok-2(Grok 3 coming too confirmed by its CEO)
•FILE ANALYSIS
•PRO SEARCH

✅Image Generation 🎥
•Flux, DALL-E 3
•Playground v3, Stable Diffusion XL

✔️ What You Get
•1 year of full access.
•A 12-month warranty is included.

💨 This post will be deleted/removed after 24 hours so save my username or contact immediately.

💰 Payment Method: Crypto[LTC or USDT] or UPI
✅ For Inquiry/Purchase DM: @AiChatBoss


Репост из: Python | Machine Learning | Coding | R
✅ Free ML Books You Should Know!

1⃣ Dive into Deep Learning: https://d2l.ai

🔢 Deep Learning: https://deeplearningbook.org

🔢 Interpretable Machine Learning: https://christophm.github.io/interpretable-ml-book/

🔢 Machine Learning Yearning: https://info.deeplearning.ai/machine-learning-yearning-book

🔢 Mathematics for Machine Learning: https://mml-book.github.io

🔢 An Introduction to Statistical Learning: https://statlearning.com

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming

https://t.me/CodeProgrammer 🖥


The Hundred-Page Language Models Book

Read it:
https://github.com/aburkov/theLMbook

#LLM #NLP #ML #AI #PYTHON #PYTORCH

https://t.me/DataScienceM


Prepared a Statistical Analysis Cheatsheet Using Python.

https://t.me/DataScienceM 📂


Репост из: Python | Machine Learning | Coding | R
✔️ Awesome AI/ML Resources: Learn AI/ML for beginners with a roadmap and free resources.

🖥  https://github.com/armankhondker/awesome-ai-ml-resources

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience

https://t.me/CodeProgrammer 🖥


20x faster KMeans with Faiss!!

KMeans uses a slow, exhaustive search to find the nearest centroids.

Faiss uses "Inverted Index"—an optimized data structure to store and index data points for approximate neighbor search.

📚

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book:

💬 Tags: #

'https://t.me/addlist/8_rRW2scgfRhOTc0' rel='nofollow'>✅ USEFUL CHANNELS FOR YOU ⭐️


Видео недоступно для предпросмотра
Смотреть в Telegram
Create pivot tables in your Jupyter Notebook:

Here's the link to the #GitHub repo and documentation:

https://pivottable.js.org/examples/

#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras

https://t.me/DataScienceM


🍃 Stem-Leaf Plot - An intelligent visualization!

It's a simple and effective way to visualize and compare datasets.

📊 Imagine we have two datasets: Set 1 (7, 12, 14, 17, 19, 23, 25) and Set 2 (3, 11, 16, 18, 20, 21, 24). We'll use a stem-leaf plot to compare them.

🌿 First, let's create the 'stem' which represents the tens place (0, 1, 2) and the 'leaf' represents the ones place (0-9).

🔍 By comparing the plots, we can see that Dataset 1 has higher values in the tens place, while Dataset 2 has a more uniform distribution.

🎯 Stem-leaf plots are great for small datasets and provide a clear picture of data distribution. The special thing about a stem-and-leaf diagram is that the original data can be read out of the graphical representation.


Give it a try next time you need to compare datasets!

✍🏽 Have you used stem-leaf plots before?

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience

https://t.me/CodeProgrammer ✈️


Complete Roadmap to Become a Data Scientist

#python #datascientist

https://t.me/DataScienceM


Best Deep Learning Courses:
https://mltut.com/best-deep-learning-courses-on-coursera/

#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras

https://t.me/DataScienceM


"Introduction to Applied Linear Algebra" by S. Boyd (Stanford) & L. Vandenberghe (UCLA)

📘 Freely available at: https://web.stanford.edu/~boyd/vmls/

📽 Lecture Videos at: https://youtube.com/playlist?list=PLoROMvodv4rMz-WbFQtNUsUElIh2cPmN9

📚

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book:

💬 Tags: #

'https://t.me/addlist/8_rRW2scgfRhOTc0' rel='nofollow'>✅ USEFUL CHANNELS FOR YOU ⭐️


Видео недоступно для предпросмотра
Смотреть в Telegram
Last week we introduced how transformer LLMs work, this week we go deeper into one of its key elements—the attention mechanism, in a new #OpenSourceAI course, Attention in Transformers: Concepts and #Code in #PyTorch

Enroll Free: https://www.deeplearning.ai/short-courses/attention-in-transformers-concepts-and-code-in-pytorch/

#LLMCourse #Transformers #MachineLearning #AIeducation #DeepLearning #TechSkills #ArtificialIntelligence

https://t.me/DataScienceM


Discover an incredible LLM course designed to deepen your understanding of the transformer architecture and its role in building powerful Large Language Models (LLMs). This course breaks down complex concepts into easy-to-grasp modules, making it perfect for both beginners and advanced learners. Dive into the mechanics of attention mechanisms, encoding-decoding processes, and much more. Elevate your AI knowledge and stay ahead in the world of machine learning!

Enroll Free: https://www.deeplearning.ai/short-courses/how-transformer-llms-work/
#LLMCourse #Transformers #MachineLearning #AIeducation #DeepLearning #TechSkills #ArtificialIntelligence

https://t.me/DataScienceM

📚

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book:

💬 Tags: #

'https://t.me/addlist/8_rRW2scgfRhOTc0' rel='nofollow'>✅ USEFUL CHANNELS FOR YOU ⭐️


Видео недоступно для предпросмотра
Смотреть в Telegram
how transformers remember facts

#Transformers #NLP #LLM #MachineLearning #DeepLearning #AI #ArtificialIntelligence #TechInnovation #DataScience #NeuralNetworks

https://t.me/DataScienceM


Репост из: Python | Machine Learning | Coding | R
MIT's "Machine Learning" lecture notes

PDF: https://introml.mit.edu/_static/spring24/LectureNotes/6_390_lecture_notes_spring24.pdf

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience

https://t.me/CodeProgrammer ✈️


"Mathematical Foundations of Machine Learning"

PDF: https://nowak.ece.wisc.edu/MFML.pdf

#Mathematics #MachineLearning #AI #DataScience #MathFoundations #MLTheory #ArtificialIntelligence #EducationalResources #PDFResource #TechLearning

https://t.me/DataScienceM


Need a reference for algebra?

Here's a cheat sheet you can download

https://t.me/DataScienceM

#Algebra #Statistics #Mathematics #DataAnalysis #Equations #Probability #MathSkills #NumbersGame #QuantitativeReasoning #MathIsFun


Репост из: Python | Machine Learning | Coding | R
🔰 How to become a data scientist in 2025?

👨🏻‍💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


🔢 Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

Linear algebra: matrices, vectors, eigenvalues.

🔗 Course: MIT 18.06 Linear Algebra


Calculus: derivative, integral, optimization.

🔗 Course: MIT Single Variable Calculus


Statistics and probability: Bayes' theorem, hypothesis testing.

🔗 Course: Statistics 110

➖➖➖➖➖

🔢 Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

Python: Pandas, NumPy, Matplotlib libraries

🔗 Course: FreeCodeCamp Python Course

SQL language: Join commands, Window functions, query optimization.

🔗 Course: Stanford SQL Course

Data structures and algorithms: arrays, linked lists, trees.

🔗 Course: MIT Introduction to Algorithms

➖➖➖➖➖

🔢 Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

Data cleaning: Working with missing values ​​and detecting outliers.

🔗 Course: Data Cleaning

Data visualization: Matplotlib, Seaborn, Tableau

🔗 Course: Data Visualization Tutorial

➖➖➖➖➖

🔢 Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

Supervised learning: regression, classification.

Unsupervised learning: clustering, PCA, anomaly detection.

Deep learning: neural networks, CNN, RNN


🔗 Course: CS229: Machine Learning

➖➖➖➖➖

🔢 Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

Big Data Tools: Hadoop, Spark, Dask

Cloud platforms: AWS, GCP, Azure

🔗 Course: Data Engineering

➖➖➖➖➖

🔢 Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

Kaggle competitions: solving real-world challenges.

End-to-End projects: data collection, modeling, implementation.

GitHub: Publish your projects on GitHub.

🔗 Platform: Kaggle🔗 Platform: ods.ai

➖➖➖➖➖

🔢 Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

MLOps training: model versioning, monitoring, model retraining.

Deployment models: Flask, FastAPI, Docker

🔗 Course: Stanford MLOps Course

➖➖➖➖➖

🔢 Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

Read scientific articles: arXiv, Google Scholar

Connect with the data community:

🔗 Site: Papers with code
🔗 Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer


Репост из: Python | Machine Learning | Coding | R
The Big Book of Large Language Models by Damien Benveniste

✅ Chapters:
1⃣ Introduction

🔢 Language Models Before Transformers

🔢 Attention Is All You Need: The Original Transformer Architecture

🔢 A More Modern Approach To The Transformer Architecture

🔢 Multi-modal Large Language Models

🔢 Transformers Beyond Language Models

🔢 Non-Transformer Language Models

🔢 How LLMs Generate Text

🔢 From Words To Tokens

1⃣0⃣ Training LLMs to Follow Instructions

1⃣1⃣ Scaling Model Training

1⃣🔢 Fine-Tuning LLMs

1⃣🔢 Deploying LLMs

Read it: https://book.theaiedge.io/

#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer


Репост из: Python | Machine Learning | Coding | R
Free Certification Courses to Learn Data Analytics in 2025:

1. Python
🔗 https://imp.i384100.net/5gmXXo

2. SQL
🔗 https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql

3. Statistics and R
🔗 https://edx.org/learn/r-programming/harvard-university-statistics-and-r

4. Data Science: R Basics
🔗https://edx.org/learn/r-programming/harvard-university-data-science-r-basics

5. Excel and PowerBI
🔗 https://learn.microsoft.com/en-gb/training/paths/modern-analytics/

6. Data Science: Visualization
🔗https://edx.org/learn/data-visualization/harvard-university-data-science-visualization

7. Data Science: Machine Learning
🔗https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

8. R
🔗https://imp.i384100.net/rQqomy

9. Tableau
🔗https://imp.i384100.net/MmW9b3

10. PowerBI
🔗 https://lnkd.in/dpmnthEA

11. Data Science: Productivity Tools
🔗 https://lnkd.in/dGhPYg6N

12. Data Science: Probability
🔗https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science

13. Mathematics
🔗http://matlabacademy.mathworks.com

14. Statistics
🔗 https://lnkd.in/df6qksMB

15. Data Visualization
🔗https://imp.i384100.net/k0X6vx

16. Machine Learning
🔗 https://imp.i384100.net/nLbkN9

17. Deep Learning
🔗 https://imp.i384100.net/R5aPOR

18. Data Science: Linear Regression
🔗https://pll.harvard.edu/course/data-science-linear-regression/2023-10

19. Data Science: Wrangling
🔗https://edx.org/learn/data-science/harvard-university-data-science-wrangling

20. Linear Algebra
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

21. Probability
🔗 https://pll.harvard.edu/course/data-science-probability

22. Introduction to Linear Models and Matrix Algebra
🔗https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra

23. Data Science: Capstone
🔗 https://edx.org/learn/data-science/harvard-university-data-science-capstone

24. Data Analysis
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY

26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2

27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience

Показано 20 последних публикаций.