Logistic regression fits a logistic model to data and makes predictions about the probability of an event (between 0 and 1).
Naive Bayes uses Bayes Theorem to model the conditional relationship of each attribute to the class variable.
The k-Nearest Neighbor (kNN) method makes predictions by locating similar cases to a given data instance (using a similarity function) and returning the average or majority of the most similar data instances. The kNN algorithm can be used for classification or regression.
Classification and Regression Trees (CART) are constructed from a dataset by making splits that best separate the data for the classes or predictions being made. The CART algorithm can be used for classification or regression.
Support Vector Machines (SVM) are a method that uses points in a transformed problem space that best separate classes into two groups. Classification for multiple classes is supported by a one-vs-all method. SVM also supports regression by modeling the function with a minimum amount of allowable error.
Naive Bayes uses Bayes Theorem to model the conditional relationship of each attribute to the class variable.
The k-Nearest Neighbor (kNN) method makes predictions by locating similar cases to a given data instance (using a similarity function) and returning the average or majority of the most similar data instances. The kNN algorithm can be used for classification or regression.
Classification and Regression Trees (CART) are constructed from a dataset by making splits that best separate the data for the classes or predictions being made. The CART algorithm can be used for classification or regression.
Support Vector Machines (SVM) are a method that uses points in a transformed problem space that best separate classes into two groups. Classification for multiple classes is supported by a one-vs-all method. SVM also supports regression by modeling the function with a minimum amount of allowable error.